Dynamics of multilayer networks with amplification
2020-12-17
Njougouo Thierry,

LOUODOP FOTSO,

Abstract : We study the dynamics of a multilayer network of chaotic oscillators subject to amplification. Previous studies have proven that multilayer networks present phenomena such as synchronization, cluster, and chimera states. Here, we consider a network with two layers of Rössler chaotic oscillators as well as applications to multilayer networks of the chaotic jerk and Liénard oscillators. Intra-layer coupling is considered to be all to all in the case of Rössler oscillators, a ring for jerk oscillators and global mean field coupling in the case of Liénard, inter-layer coupling is unidirectional in all these three cases. The second layer has an amplification coefficient. An in-depth study on the case of a network of Rössler oscillators using a master stability function and order parameter leads to several phenomena such as complete synchronization, generalized, cluster, and phase synchronization with amplification. For the case of Rössler oscillators, we note that there are also certain values of coupling parameters and amplification where the synchronization does not exist or the synchronization can exist but without amplification. Using other systems with different topologies, we obtain some interesting results such as chimera state with amplification, cluster state with amplification, and complete synchronization with amplification.